第七十九章 人工智能算法-《无可脱罪》
第(2/3)页
小安也来了兴趣,“现在的人脸识别技术不是已经很成熟了吗?一些办公大厦、高铁站,刷脸就能通行。”
“没错,但本质概念还是一样的。高铁站刷脸,是用你真实的人脸和身份证上的人脸作对比,一共就两张图,以身份证照片作为底图。而且有效的人脸范围只需要双眼到下巴这个区间,眼睛以上和下巴以下都是无用数据,用证件照去和抓拍的人脸进行比对,这个对比数据量其实很小,结果都是秒出。”
“是啊,坐高铁进站的都是脸对着摄像头一刷就行,最多一秒。”秦刚道。
“那只是整个过程,实际不需要一秒,对比结果还要通知传感器,传感器发出开闸指令,整体过程大概一秒。”
“那我们现在的难度在哪里。”小安道。
“第一我们没有原型,不过原型库容易建,就是背包和帽子,找一些体型身高不同的人穿戴起来,拍下正面和侧面,这个量不会大,效率高人齐两小时就弄完,难点是第二。”
不知不觉间,好几个事同事都竖起耳朵听着李毅讲解。
“继续继续,别停下来。”小安显得尤为感兴趣。
“我们做的不是静态分析,而是一种动态的行为分析。”
李毅索性站到白板边,写下:行为分析,从校外进入往另一边的围墙走。
“假定一段录像从头开始播,先要对比到进入画面的某个人背包戴帽的特征,这一帧图像的数据算是符合,确定一个原型,这个原型不是底图库的原型,动态的用完就删除。然后要分析是男还是女,一个人的正脸照,在计算机算法里可以识别性别,但侧脸就不清楚,估计不行,但女性需要过滤掉,然后一直到这个原型消失,这算一次行为。”
“懂了,出现和消失,这算一次行为。”秦刚道。
“别打岔。”小安拍拍秦刚。
“对的,出现和消失。那什么叫做消失,我们肉眼看是这个人走进了摄像头的死角或者是走出了拍摄范围,不再出现就算消失。但对计算机数据来讲就有点模糊,电脑只认0和1,看得见存在看不见消失,按这个逻辑就会产生很多误判。”
“为什么了。”小安比较急切。
“如果一个人蹲下来绑鞋带,刚好被植物挡住,算不算消失了?按照0和1的逻辑,肯定算消失,但肯定不对。人可以通过快进往前继续看一段,计算机不能这么做,必须一帧一帧的对比,否则就没有意义对吧。”
周围的同事都点头同意。
第(2/3)页